

LAB TEST – 3 June 30, 2021

1. Task Scheduling. A set of n tasks, T1 … Tn, will run on a single machine. The machine runs one task at

a time and completes one task before starting the next. Each task Tk has a known execution time, Rk,

which is the time for which it runs on the machine. If the output of task Ta is an input to task Tb, then Tb

cannot be started before Ta has completed. Suppose the runtimes and the dependencies between the

tasks are as shown in the following example:

T1, 10, T2, T3 // The runtime of T1 is 10, and it needs the outputs of T2 and T3

T2, 5 // The runtime of T2 is 5. It has no input dependencies

T3, 2

T4, 5, T1, T5

T5, 2, T3 // The runtime of T5 is 2, and it needs the outputs of T3

We can schedule these tasks on the machine in different ways such that they do not violate their input

dependencies.

For example, one valid schedule is [T2, T3, T5, T1, T4]. Another valid schedule is [T3, T2, T1, T5, T4].

Write a program that does the following:

(a) It reads the number of tasks, n, and then reads the runtimes and the input dependencies for each of

the n tasks. Assume that no task has more than two input dependencies. Also assume that the input

consists of n+1 lines. The first line contains a single integer specifying the value of n. The kth line after

the first line contains an integer specifying the runtime of task Tk followed by two integers for the input

dependencies. If a task has less than two dependencies, then the user enters –1 in place of the

remaining integer(s). For example, the input for our example will be:
5
10 2 3
5 −1 −1
2 −1 −1
5 1 5
2 3 −1

The data should be read into a dynamically allocated array of n structures of the following type:
 struct task {
 int runtime; // Runtime of the task
 int id1; // Input dependency 1
 int id2; // Input dependency 2
 }

(b) The program should print the total time required to complete all tasks

(c) The program should read an integer, a, and print the following:

(i) The earliest time when task Ta can be scheduled. [Hint: Identify the tasks that must precede

Ta and sum their runtimes.]

(ii) The list of tasks that cannot be scheduled before Ta is completed.

CS19001 Programming and Data Structures Lab

[Answers for the given example when a=1:

 Total time = 24

 Earliest time when T1 can start = 7 (runtime of T2 + runtime of T3)

 List of tasks that cannot be scheduled before T1 = { T4 }]

[Submission Filename: 〈Your roll number〉LT3.c

 If your roll number is 20CS30099, then the filename for this task will be 20CS30099LT3.c]

